h264rtp,UDP分包重组算法和 基于RTP的H264视频数据分包重组

UDP分包重组算法 转自:http://blog.csdn.net/sxcong/archive/2009/02/12/3882721.aspx
使用jrtplib3.7.1的主要工作有两个:
一是发送接收数据需要分片和重组。开始采集双向链表,后来发现处理不够好,内存总出错(好久没研究数据结构了)。后来直接采用分配缓冲,发送数据时标志offset,接收数据 按offset直接填充,非常简单。当然接收时判断一下,有没有重复的数据。
二是继承RTPSession,写一个响应类,在这里接收和发送。
然后,写一个对话框程序,用 DirectShow调用摄像头, 用SampleGrabber的方式抓数据,然后用libavcodec压成264;用DirectSound采集声音,用Speex压缩。先在内网测试,两台PC(或虚拟机)之间,直接向对方IP和端口发音视频,收到后解码,效果非常好。
到此为止,jprtlib表现的非常完美,另外代码质量也非常。
不过再下一步就有点问题,我用jrtplib再写服务器端,协助双方打洞。比较奇怪的是,客户端和服务器端只不过发送很少的命令字,双方反应都相当慢。看了看jrtplib代码,修改了一下socket接收发送的缓冲也不行。时间有限,没有完全看下去。估计是rtp和rtcp做协调时影响了效率。
简单地总结一下:如果使用jrtplib传送音视频媒体数据,非常理想。但如果使用它用来做服务器处理命令,效率肯定不行(当然修改其源码也能解决问题)。
也有变通的方法:可以自己写一个简单的可靠UDP,专门用来负责命令通信,用它得到对方的IP和端口后,送给jrtplib,然后jrtplib向这个IP端口发送数据就可以了。
不过,这样一样,还不如参考jrtplib源码,自己封装一个更好一些的UDP传输库。
传输音视频,因为数据量大,基本上不需要重传,只要做好丢包控制和同步就行了,所以完全可以不用jrtplib.
jrtplib主要的问题就是重组。
重组算法后面附上,虽然是测试代码,不过也稳定。
UDP分包重组算法
//Packet.h
#include "InetAddr.h" //对socket地址操作封装的类,比如char*IP转成ULONG
#include
using namespace std;
//先定义包头
typedef struct _HeadExt
{
//每帧所有分片公用信息
char flag[5]; //可以任意字符或数字或其他方法,用来标志我们发送的数据
UINT m_nSeqNumber; //本帧序数
USHORT m_nTotalFragment; //本帧数据可分成的总片数
USHORT m_nTotalSize; //本帧数据总长度
//每片各自信息
USHORT m_nFragmentIndex; //每帧分片序数,0 1 2 ... ,\
USHORT m_usPayloadSize; //本片数据长度
USHORT m_usFragOffset; //本片数据相对总数据的偏移量
USHORT m_bLastFragment; //是否最后一帧
//上 述数据有些重复,可以精简,有时间再修改
}HeadExt;
//从socket接收到的数据
class PacketIn
{
public :
PacketIn(char* lpszBuffer=NULL, UINT usBufferSize=0, UINT nDataSize=0);
virtual ~PacketIn();
HeadExt head;
BYTE* m_lpszBuffer;
ULONG ip;
UINT port;
CVLInetAddr addr;
BOOL Normalize();
UINT m_nDataLen;
UINT m_usBufferSize;
};
//接收到数据后开始重组使用的一个中间缓冲区,多个PacketIn合成一个Packet
//发送时从一个Packet分割出多片,不过本程序里直接发送,没有封成Packet
class Packet
{
public:
enum { TIMEOUT_LOCKFRAGMENTS = 1000 };
Packet( );
~Packet();
void reset();
void Set(const CVLInetAddr& iaFrom, UINT nSeqNumber );
BOOL InsertFragment(PacketIn* const pFragment);
bool m_bUsed;
int recvedpacks;
int recvedbytes;
int seqnum;
BYTE* m_pBuffer;
//测试用程序,直接访问了类的变量,没有封装成函数。上述变量正常应该写成 SetXXX ,GetXXX
private:
BOOL IsFragComplete() const;
ULONG m_ip;
USHORT m_port;
UINT m_nSeqNumber;
vector SeqNumberList;
};
//Packet.cpp
#include "Packet.h"
PacketIn::PacketIn(char* lpszBuffer/*=NULL*/, UINT usBufferSize/*=0*/, UINT nDataSize/*=0*/)
{
m_lpszBuffer = (BYTE*)lpszBuffer;
m_usBufferSize = usBufferSize; //数据最大长度,其实没什么用,已经设置了这个值最大为64000
m_nDataLen = nDataSize;
}
PacketIn::~PacketIn()
{
}
BOOL PacketIn::Normalize() //判断收到的数据是否有效
{
const USHORT usHeaderSize = sizeof(HeadExt);
if ( !m_lpszBuffer || m_usBufferSize < usHeaderSize )//没什么用
{
return FALSE;
}
HeadExt* pHeader = (HeadExt*)( m_lpszBuffer );
if ( pHeader->m_usPayloadSize != m_nDataLen - usHeaderSize )
{
return FALSE;
}
head = *pHeader;
if ( pHeader->m_usPayloadSize > 0 )
{
memmove( m_lpszBuffer, m_lpszBuffer + usHeaderSize, pHeader->m_usPayloadSize );
}
return TRUE;
}
/////////////
//这里是重组数据的临时缓冲,只看这里必然迷惑,先看socket收数据那里,再回来查看
void Packet::Set( const CVLInetAddr& iaFrom, UINT nSeqNumber )
{
m_iaFrom = iaFrom;
m_nSeqNumber = nSeqNumber;
if(m_pBuffer)
delete []m_pBuffer;
}
void Packet::reset()
{
m_bUsed = false;
recvedpacks = 0;
seqnum = 0;
recvedbytes = 0;
m_pBuffer = NULL;
m_pBuffer = new BYTE[64000];
SeqNumberList.clear();
}
Packet::Packet()
{
//calculate the ttl
//m_nTTL = RUDP_REASSEMBLE_TIMEOUT*CRudpPeer::PR_SLOWHZ;
reset();
}
Packet::~Packet()
{
if(m_pBuffer)
delete []m_pBuffer;
}
BOOL Packet::InsertFragment(PacketIn* const pFragment)
{
int nSize = SeqNumberList.size();
for(int i = 0; i< nSize ;i ++)
{
if(nSize ==SeqNumberList[i] )//收到重复数据包
{
return FALSE;
}
}
SeqNumberList.push_back(pFragment->head.m_nFragmentIndex);
memcpy( m_pBuffer + pFragment->head.m_usFragOffset, pFragment->m_lpszBuffer, pFragment->head.m_usPayloadSize);
recvedbytes += pFragment->head.m_usPayloadSize;
recvedpacks++;
m_bUsed = true;
CString str;
str.Format("收到数据:m_nSeqNumber%d ,m_nTotalFragment %d,m_nFragmentIndex %d,m_usFragOffset %d,m_nTotalSize %d,recvedbytes %d\r\n",
pFragment->head.m_nSeqNumber,pFragment->head.m_nTotalFragment,pFragment->head.m_nFragmentIndex,pFragment->head.m_usFragOffset,pFragment->head.m_nTotalSize,pFragment->head.m_usPayloadSize);
OutputDebugString(str);
if(recvedbytes == pFragment->head.m_nTotalSize )
return TRUE;
return FALSE;
}
return;
}
if(pHead->m_nTotalFragment == 1)//只有一帧,不分片
{
//回调,上层处理
if(m_pfDispatch)
m_pfDispatch(pBuff+sizeof(HeadExt),nLen-sizeof(HeadExt),ip,port,m_lpParam);
return;
}
PacketIn data( (char*)pBuff, 64000, nLen );
if ( !data.Normalize() )
return;
if ( data.head.m_nTotalFragment>1 )
{
Packet* pTemp = GetPartialPacket( iaRemote, data.head.m_nSeqNumber );
if ( pTemp )
{
if ( pTemp ->InsertFragment( &data ) )
{
m_pfDispatch(pTemp ->m_pBuffer,
pTemp ->recvedbytes,ip,port,m_lpParam);
}
}//end of if
}
}
//上面用到的一些变量可以在一个.h里面定义,比如:
Packet TempPacket[16];//分配一个数组,每个节点是一个重组后临时缓冲
Packet* GetPartialPacket(const CVLInetAddr& iaFrom, UINT nSeqNumber);//从数组里取出一个缓冲节点
Packet* GetPartialPacket(const ULONG ip,USHORT port, UINT nSeqNumber)//根据这几个关键字查找,不过只用//到了nSeqNumber,要是3人以上的视频聊天,ip和port是必要的
{
Packet* tmp = NULL;
int i=0;
while(tmp==NULL && i<16)
{
//该包所属的帧已有其它数据包到达
if(TempPacket[i].seqnum==nSeqNumber && TempPacket[i].recvedpacks>0)
{
tmp = &TempPacket[i];
break;
}
i++;
}
if(tmp == NULL) //新的帧
{
//查找空闲元素
for(i=0;i<16;i++)
{
if(!TempPacket[i].m_bUsed)
break;
}
if(i>=16)
{
//没有空闲的元素,丢掉一个最早
tmp = &TempPacket[0];
int j = 0;
for(i=1;i<16;i++)
{
if(TempPacket[i].seqnum < tmp->seqnum)
{
tmp = &TempPacket[i];
j = i;
}
}
//找到最早的一帧
if(tmp->m_pBuffer)
{
delete []tmp->m_pBuffer;
tmp->reset();
}
}
else
tmp = &TempPacket[i];
}
InsertFragment
tmp->m_bUsed = true;
tmp->seqnum = nSeqNumber;
return tmp;
}
整个示例最重要的是两个函数:
GetPartialPacket:取到一个临时缓冲节点
InsertFragment:把收到的每个数据段插入临时缓冲组成一个完整帧
当然发送方也要按一定规则分割发送。
基于RTP的H264视频数据分包重组 转自:http://blog.csdn.net/dengzikun/archive/2010/08/12/5807694.aspx
最近考虑使用RTP替换原有的高清视频传输协议,遂上网查找有关H264视频RTP打包、解包的文档和代码。功夫不负有心人,找到不少有价值的文档和代码。参考这些资料,写了H264 RTP打包类、解包类,实现了单个NAL单元包和FU_A分片单元包。对于丢包处理,采用简单的策略:丢弃随后的所有数据包,直到收到关键帧。测试效果还不错,代码贴上来,若能为同道中人借鉴一二,足矣。两个类的使用说明如下(省略了错误处理过程):
DWORD H264SSRC ;
CH264_RTP_PACK pack ( H264SSRC ) ;
BYTE *pVideoData ;
DWORD Size, ts ;
bool IsEndOfFrame ;
WORD wLen ;
pack.Set ( pVideoData, Size, ts, IsEndOfFrame ) ;
BYTE *pPacket ;
while ( pPacket = pack.Get ( &wLen ) )
{
// rtp packet process
// ...
}
HRESULT hr ;
CH264_RTP_UNPACK unpack ( hr ) ;
BYTE *pRtpData ;
WORD inSize;
int outSize ;
BYTE *pFrame = unpack.Parse_RTP_Packet ( pRtpData, inSize, &outSize ) ;
if ( pFrame != NULL )
{
// frame process
// ...
}
view plaincopy to clipboardprint?
//////////////////////////////////////////////////////////////////////////////////////////
// class CH264_RTP_PACK start
class CH264_RTP_PACK
{
#define RTP_VERSION 2
typedef struct NAL_msg_s
{
bool eoFrame ;
unsigned char type; // NAL type
unsigned char *start; // pointer to first location in the send buffer
unsigned char *end; // pointer to last location in send buffer
unsigned long size ;
} NAL_MSG_t;
typedef struct
{
//LITTLE_ENDIAN
unsigned short cc:4; /* CSRC count */
unsigned short x:1; /* header extension flag */
unsigned short p:1; /* padding flag */
unsigned short v:2; /* packet type */
unsigned short pt:7; /* payload type */
unsigned short m:1; /* marker bit */
unsigned short seq; /* sequence number */
unsigned long ts; /* timestamp */
unsigned long ssrc; /* synchronization source */
} rtp_hdr_t;
typedef struct tagRTP_INFO
{
NAL_MSG_t nal; // NAL information
rtp_hdr_t rtp_hdr; // RTP header is assembled here
int hdr_len; // length of RTP header
unsigned char *pRTP; // pointer to where RTP packet has beem assembled
unsigned char *start; // pointer to start of payload
unsigned char *end; // pointer to end of payload
unsigned int s_bit; // bit in the FU header
unsigned int e_bit; // bit in the FU header
bool FU_flag; // fragmented NAL Unit flag
} RTP_INFO;
public:
CH264_RTP_PACK(unsigned long H264SSRC, unsigned char H264PAYLOADTYPE=96, unsigned short MAXRTPPACKSIZE=1472 )
{
m_MAXRTPPACKSIZE = MAXRTPPACKSIZE ;
if ( m_MAXRTPPACKSIZE > 10000 )
{
m_MAXRTPPACKSIZE = 10000 ;
}
if ( m_MAXRTPPACKSIZE < 50 )
{
m_MAXRTPPACKSIZE = 50 ;
}
memset ( &m_RTP_Info, 0, sizeof(m_RTP_Info) ) ;
m_RTP_Info.rtp_hdr.pt = H264PAYLOADTYPE ;
m_RTP_Info.rtp_hdr.ssrc = H264SSRC ;
m_RTP_Info.rtp_hdr.v = RTP_VERSION ;
m_RTP_Info.rtp_hdr.seq = 0 ;
}
~CH264_RTP_PACK(void)
{
}
//传入Set的数据必须是一个完整的NAL,起始码为0x00000001。
//起始码之前至少预留10个字节,以避免内存COPY操作。
//打包完成后,原缓冲区内的数据被破坏。
bool Set ( unsigned char *NAL_Buf, unsigned long NAL_Size, unsigned long Time_Stamp, bool End_Of_Frame )
{
unsigned long startcode = StartCode(NAL_Buf) ;
if ( startcode != 0x01000000 )
{
return false ;
}
int type = NAL_Buf[4] & 0x1f ;
if ( type < 1 || type > 12 )
{
return false ;
}
m_RTP_Info.nal.start = NAL_Buf ;
m_RTP_Info.nal.size = NAL_Size ;
m_RTP_Info.nal.eoFrame = End_Of_Frame ;
m_RTP_Info.nal.type = m_RTP_Info.nal.start[4] ;
m_RTP_Info.nal.end = m_RTP_Info.nal.start + m_RTP_Info.nal.size ;
m_RTP_Info.rtp_hdr.ts = Time_Stamp ;
m_RTP_Info.nal.start += 4 ; // skip the syncword
if ( (m_RTP_Info.nal.size + 7) > m_MAXRTPPACKSIZE )
{
m_RTP_Info.FU_flag = true ;
m_RTP_Info.s_bit = 1 ;
m_RTP_Info.e_bit = 0 ;
m_RTP_Info.nal.start += 1 ; // skip NAL header
}
else
{
m_RTP_Info.FU_flag = false ;
m_RTP_Info.s_bit = m_RTP_Info.e_bit = 0 ;
}
m_RTP_Info.start = m_RTP_Info.end = m_RTP_Info.nal.start ;
m_bBeginNAL = true ;
return true ;
}
//循环调用Get获取RTP包,直到返回值为NULL
unsigned char* Get ( unsigned short *pPacketSize )
{
if ( m_RTP_Info.end == m_RTP_Info.nal.end )
{
*pPacketSize = 0 ;
return NULL ;
}
if ( m_bBeginNAL )
{
m_bBeginNAL = false ;
}
else
{
m_RTP_Info.start = m_RTP_Info.end; // continue with the next RTP-FU packet
}
int bytesLeft = m_RTP_Info.nal.end - m_RTP_Info.start ;
int maxSize = m_MAXRTPPACKSIZE - 12 ; // sizeof(basic rtp header) == 12 bytes
if ( m_RTP_Info.FU_flag )
maxSize -= 2 ;
if ( bytesLeft > maxSize )
{
m_RTP_Info.end = m_RTP_Info.start + maxSize ; // limit RTP packetsize to 1472 bytes
}
else
{
m_RTP_Info.end = m_RTP_Info.start + bytesLeft ;
}
if ( m_RTP_Info.FU_flag )
{ // multiple packet NAL slice
if ( m_RTP_Info.end == m_RTP_Info.nal.end )
{
m_RTP_Info.e_bit = 1 ;
}
}
m_RTP_Info.rtp_hdr.m = m_RTP_Info.nal.eoFrame ? 1 : 0 ; // should be set at EofFrame
if ( m_RTP_Info.FU_flag && !m_RTP_Info.e_bit )
{
m_RTP_Info.rtp_hdr.m = 0 ;
}
m_RTP_Info.rtp_hdr.seq++ ;
unsigned char *cp = m_RTP_Info.start ;
cp -= ( m_RTP_Info.FU_flag ? 14 : 12 ) ;
m_RTP_Info.pRTP = cp ;
unsigned char *cp2 = (unsigned char *)&m_RTP_Info.rtp_hdr ;
cp[0] = cp2[0] ;
cp[1] = cp2[1] ;
cp[2] = ( m_RTP_Info.rtp_hdr.seq >> 8 ) & 0xff ;
cp[3] = m_RTP_Info.rtp_hdr.seq & 0xff ;
cp[4] = ( m_RTP_Info.rtp_hdr.ts >> 24 ) & 0xff ;
cp[5] = ( m_RTP_Info.rtp_hdr.ts >> 16 ) & 0xff ;
cp[6] = ( m_RTP_Info.rtp_hdr.ts >> 8 ) & 0xff ;
cp[7] = m_RTP_Info.rtp_hdr.ts & 0xff ;
cp[8] = ( m_RTP_Info.rtp_hdr.ssrc >> 24 ) & 0xff ;
cp[9] = ( m_RTP_Info.rtp_hdr.ssrc >> 16 ) & 0xff ;
cp[10] = ( m_RTP_Info.rtp_hdr.ssrc >> 8 ) & 0xff ;
cp[11] = m_RTP_Info.rtp_hdr.ssrc & 0xff ;
m_RTP_Info.hdr_len = 12 ;
/*!
* \n The FU indicator octet has the following format:
* \n
* \n +---------------+
* \n MSB |0|1|2|3|4|5|6|7| LSB
* \n +-+-+-+-+-+-+-+-+
* \n |F|NRI| Type |
* \n +---------------+
* \n
* \n The FU header has the following format:
* \n
* \n +---------------+
* \n |0|1|2|3|4|5|6|7|
* \n +-+-+-+-+-+-+-+-+
* \n |S|E|R| Type |
* \n +---------------+
*/
if ( m_RTP_Info.FU_flag )
{
// FU indicator F|NRI|Type
cp[12] = ( m_RTP_Info.nal.type & 0xe0 ) | 28 ; //Type is 28 for FU_A
//FU header S|E|R|Type
cp[13] = ( m_RTP_Info.s_bit << 7 ) | ( m_RTP_Info.e_bit << 6 ) | ( m_RTP_Info.nal.type & 0x1f ) ; //R = 0, must be ignored by receiver
m_RTP_Info.s_bit = m_RTP_Info.e_bit= 0 ;
m_RTP_Info.hdr_len = 14 ;
}
m_RTP_Info.start = &cp[m_RTP_Info.hdr_len] ; // new start of payload
*pPacketSize = m_RTP_Info.hdr_len + ( m_RTP_Info.end - m_RTP_Info.start ) ;
return m_RTP_Info.pRTP ;
}
private:
unsigned int StartCode( unsigned char *cp )
{
unsigned int d32 ;
d32 = cp[3] ;
d32 <<= 8 ;
d32 |= cp[2] ;
d32 <<= 8 ;
d32 |= cp[1] ;
d32 <<= 8 ;
d32 |= cp[0] ;
return d32 ;
}
private:
RTP_INFO m_RTP_Info ;
bool m_bBeginNAL ;
unsigned short m_MAXRTPPACKSIZE ;
};
// class CH264_RTP_PACK end
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
// class CH264_RTP_UNPACK start
class CH264_RTP_UNPACK
{
#define RTP_VERSION 2
#define BUF_SIZE (1024 * 500)
typedef struct
{
//LITTLE_ENDIAN
unsigned short cc:4; /* CSRC count */
unsigned short x:1; /* header extension flag */
unsigned short p:1; /* padding flag */
unsigned short v:2; /* packet type */
unsigned short pt:7; /* payload type */
unsigned short m:1; /* marker bit */
unsigned short seq; /* sequence number */
unsigned long ts; /* timestamp */
unsigned long ssrc; /* synchronization source */
} rtp_hdr_t;
public:
CH264_RTP_UNPACK ( HRESULT &hr, unsigned char H264PAYLOADTYPE = 96 )
: m_bSPSFound(false)
, m_bWaitKeyFrame(true)
, m_bPrevFrameEnd(false)
, m_bAssemblingFrame(false)
, m_wSeq(1234)
, m_ssrc(0)
{
m_pBuf = new BYTE[BUF_SIZE] ;
if ( m_pBuf == NULL )
{
hr = E_OUTOFMEMORY ;
return ;
}
m_H264PAYLOADTYPE = H264PAYLOADTYPE ;
m_pEnd = m_pBuf + BUF_SIZE ;
m_pStart = m_pBuf ;
m_dwSize = 0 ;
hr = S_OK ;
}
~CH264_RTP_UNPACK(void)
{
delete [] m_pBuf ;
}
//pBuf为H264 RTP视频数据包,nSize为RTP视频数据包字节长度,outSize为输出视频数据帧字节长度。
//返回值为指向视频数据帧的指针。输入数据可能被破坏。
BYTE* Parse_RTP_Packet ( BYTE *pBuf, unsigned short nSize, int *outSize )
{
if ( nSize <= 12 )
{
return NULL ;
}
BYTE *cp = (BYTE*)&m_RTP_Header ;
cp[0] = pBuf[0] ;
cp[1] = pBuf[1] ;
m_RTP_Header.seq = pBuf[2] ;
m_RTP_Header.seq <<= 8 ;
m_RTP_Header.seq |= pBuf[3] ;
m_RTP_Header.ts = pBuf[4] ;
m_RTP_Header.ts <<= 8 ;
m_RTP_Header.ts |= pBuf[5] ;
m_RTP_Header.ts <<= 8 ;
m_RTP_Header.ts |= pBuf[6] ;
m_RTP_Header.ts <<= 8 ;
m_RTP_Header.ts |= pBuf[7] ;
m_RTP_Header.ssrc = pBuf[8] ;
m_RTP_Header.ssrc <<= 8 ;
m_RTP_Header.ssrc |= pBuf[9] ;
m_RTP_Header.ssrc <<= 8 ;
m_RTP_Header.ssrc |= pBuf[10] ;
m_RTP_Header.ssrc <<= 8 ;
m_RTP_Header.ssrc |= pBuf[11] ;
BYTE *pPayload = pBuf + 12 ;
DWORD PayloadSize = nSize - 12 ;
// Check the RTP version number (it should be 2):
if ( m_RTP_Header.v != RTP_VERSION )
{
return NULL ;
}
/*
// Skip over any CSRC identifiers in the header:
if ( m_RTP_Header.cc )
{
long cc = m_RTP_Header.cc * 4 ;
if ( Size < cc )
{
return NULL ;
}
Size -= cc ;
p += cc ;
}
// Check for (& ignore) any RTP header extension
if ( m_RTP_Header.x )
{
if ( Size < 4 )
{
return NULL ;
}
Size -= 4 ;
p += 2 ;
long l = p[0] ;
l <<= 8 ;
l |= p[1] ;
p += 2 ;
l *= 4 ;
if ( Size < l ) ;
{
return NULL ;
}
Size -= l ;
p += l ;
}
// Discard any padding bytes:
if ( m_RTP_Header.p )
{
if ( Size == 0 )
{
return NULL ;
}
long Padding = p[Size-1] ;
if ( Size < Padding )
{
return NULL ;
}
Size -= Padding ;
}*/
// Check the Payload Type.
if ( m_RTP_Header.pt != m_H264PAYLOADTYPE )
{
return NULL ;
}
int PayloadType = pPayload[0] & 0x1f ;
int NALType = PayloadType ;
if ( NALType == 28 ) // FU_A
{
if ( PayloadSize < 2 )
{
return NULL ;
}
NALType = pPayload[1] & 0x1f ;
}
if ( m_ssrc != m_RTP_Header.ssrc )
{
m_ssrc = m_RTP_Header.ssrc ;
SetLostPacket () ;
}
if ( NALType == 0x07 ) // SPS
{
m_bSPSFound = true ;
}
if ( !m_bSPSFound )
{
return NULL ;
}
if ( NALType == 0x07 || NALType == 0x08 ) // SPS PPS
{
m_wSeq = m_RTP_Header.seq ;
m_bPrevFrameEnd = true ;
pPayload -= 4 ;
*((DWORD*)(pPayload)) = 0x01000000 ;
*outSize = PayloadSize + 4 ;
return pPayload ;
}
if ( m_bWaitKeyFrame )
{
if ( m_RTP_Header.m ) // frame end
{
m_bPrevFrameEnd = true ;
if ( !m_bAssemblingFrame )
{
m_wSeq = m_RTP_Header.seq ;
return NULL ;
}
}
if ( !m_bPrevFrameEnd )
{
m_wSeq = m_RTP_Header.seq ;
return NULL ;
}
else
{
if ( NALType != 0x05 ) // KEY FRAME
{
m_wSeq = m_RTP_Header.seq ;
m_bPrevFrameEnd = false ;
return NULL ;
}
}
}
///////////////////////////////////////////////////////////////
if ( m_RTP_Header.seq != (WORD)( m_wSeq + 1 ) ) // lost packet
{
m_wSeq = m_RTP_Header.seq ;
SetLostPacket () ;
return NULL ;
}
else
{
// 码流正常
m_wSeq = m_RTP_Header.seq ;
m_bAssemblingFrame = true ;
if ( PayloadType != 28 ) // whole NAL
{
*((DWORD*)(m_pStart)) = 0x01000000 ;
m_pStart += 4 ;
m_dwSize += 4 ;
}
else // FU_A
{
if ( pPayload[1] & 0x80 ) // FU_A start
{
*((DWORD*)(m_pStart)) = 0x01000000 ;
m_pStart += 4 ;
m_dwSize += 4 ;
pPayload[1] = ( pPayload[0] & 0xE0 ) | NALType ;
pPayload += 1 ;
PayloadSize -= 1 ;
}
else
{
pPayload += 2 ;
PayloadSize -= 2 ;
}
}
if ( m_pStart + PayloadSize < m_pEnd )
{
CopyMemory ( m_pStart, pPayload, PayloadSize ) ;
m_dwSize += PayloadSize ;
m_pStart += PayloadSize ;
}
else // memory overflow
{
SetLostPacket () ;
return NULL ;
}
if ( m_RTP_Header.m ) // frame end
{
*outSize = m_dwSize ;
m_pStart = m_pBuf ;
m_dwSize = 0 ;
if ( NALType == 0x05 ) // KEY FRAME
{
m_bWaitKeyFrame = false ;
}
return m_pBuf ;
}
else
{
return NULL ;
}
}
}
void SetLostPacket()
{
m_bSPSFound = false ;
m_bWaitKeyFrame = true ;
m_bPrevFrameEnd = false ;
m_bAssemblingFrame = false ;
m_pStart = m_pBuf ;
m_dwSize = 0 ;
}
private:
rtp_hdr_t m_RTP_Header ;
BYTE *m_pBuf ;
bool m_bSPSFound ;
bool m_bWaitKeyFrame ;
bool m_bAssemblingFrame ;
bool m_bPrevFrameEnd ;
BYTE *m_pStart ;
BYTE *m_pEnd ;
DWORD m_dwSize ;
WORD m_wSeq ;
BYTE m_H264PAYLOADTYPE ;
DWORD m_ssrc ;
};
// class CH264_RTP_UNPACK end
//////////////////////////////////////////////////////////////////////////////////////////
Powered by Zoundry Raven
Tags:  h264编码 h264播放器 h264格式 rtpudp h264rtp

延伸阅读

最新评论

发表评论